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1 Empirical Distribution Function (EDF)

Definition 1 Given distribution function F, its empirical distribution function is:

Proposition 1 The EDF estimator is unbiased.

Proof 1

2 Histogram Density Estimator

Definition 2 Histogram density estimator for density function f is defined as

R 1 mo L n n
j=1 i=1

Let Bj = [bjfl,bj),
h = bj - bjfl-

Bias:

For x € By,

Blfu(@)] = IR = P0G € B) = 3 [ B,

Let z* be the midpoint of B;, use Taylor expansion:
f = 1)+ @) a-a) o= [ fdus b,
B;

Thus,
E[fu(2)] ~ f(x) = [E[fu(2)] = f(2)] < |f(z) - f(@)| < L]z — 2*| < Lh.



Variance:

The variance can be calculated through

fala) = =2,
Var(f, (z)) = n21h2 Var(n,).

Since n; ~ Binomial(n,p;), with p; = P(X; € B;) = hf(z*), Var(n;) = np;(1 — p;) = nhf(z*)(1 —
hf(x*)), Therefore,

Var(f, () = ") T

MISE:

Proposition 2 (Mean Integrated Squared Error (MISE)) MISE = O(n~3), where MISE =
E[[(fu(e) = f(2)?da] = [0 (@)do + [ Varlfu(@)ldz.

Proof 2
bias(z) = E[fn(x)] — f(z),
Var(z) = E [fn(x) — E[fn(iﬁ)]} : )
fn(;v) is a histogram

|bias(x)| = |E[fu(2)] = f(2)] or |f(z) = f(y)| < LIz —y|
=f(@") = f(z)| < Llz" — x|
< Lh.

[ is L-Lipschitz: maxgep,q1) | f(x)| < M, maxgep,q) |f'(x)| < L, for if x € By,
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Then,

M M? M M M? M\? M2
MISE = L2h% + — + = —[2p2 4+ — 4+ = 1+ 7 >3¢ L2
5 +nh+n +2h+2nh+n nh +n’

where L?h* = = O(n~3), and MISE = O(n"3).

=

2nh’ hopt = (Tl\éz)

3 Kernel Density Estimation (KDE)

Definition 3 (Kernel Density Estimation) Kernel density estimatior is defined as

fule) = hZK< )

where K satisfies

o [y K(x)dz=1.

o lim, .o, K(z)=1lim,, - K(z)=0.

We also define some quantity for kernel density estimation, i = [ 2*°K(z)dz < +o0,0% £ [ k*(z)dz <
+o00.

Bias:

The bias at xq is

n

Bias(z) = E[fa(z0)] — ih Z - ”“"0 — f (o)
E[ (*= “””On f (o)
(z)dz — f(xo)

yif" % / K(y)f(zo+ hy)h - dy
= [ Ko+ m)ay — [ Ky
- / K (y)[f (xo + hy) — f(wo)ldy

/K hy+f”( 2)h2 v + O(h*)|dy
SEACOLs / K(y)dy + O
P
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Variance:

The variance of f,(zq) is
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Var(fu(50)) = —r 3~ Var(K (2 20)),
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The condition for the equality is h* = #)&E)]Q, which is hepy = [%} = O(n%), which

implies MISE = O(n"%).

4 Nonparametric Regression

Suppose the data is {(x;,%;)}",, the nonparametric regression function r is defined r(z) : R — R,

where y = r(z) + € and r is actually

r(z) = Bo + Bix or r(z) = BTz, for linear regression.

r(z) = Elylz] = w (1)
r(z) = Zim wnil@Vi - for ponparametric regression
- i Wna p 2 :
Define wy, ;(x) & w(x, 21, ,T,), Vp;(z) 2 %, thenr(z) = 31" wi(z)y; and Y i vyi(x) =

1.



Example 1 (Partition Estimation) For R = Uﬁl B, where B, N B; = &, define the partition
estimator r,,(x) is

2 i Ui € B))y;
i Iz € By)

ro(z) = x € Bj. (2)

Example 2 (KNN) For fived x, x(;) is defined as the i-th nearest neighbor with respect to norm || - ||,

1=1,2,---,n, that is,

lzq) — || < |z — || < < lzmall.

Then, for some constant K, the KNN estimator is defined as
1k
r(t) = 72 > v 3)
i=1

Example 3 (Kernel Estimation) For some kernel function K, the kernel estimator is given as

S K
S K (o)

(4)

Tn(x)

For instance, if K(x) =1[—%, 1], then only x € [x; — &, x; + 4] can have no-zero weights.

5 Bootstrap Method

5.1 Confidence Interval for the Mean: Classical vs. Bootstrap

1. Classical Confidence Interval via Central Limit Theorem
Let X1, Xo,.... X, P with p = E[X;] and 0% = Var(X;) < co. Define the sample mean and sample

variance:

_ 1< 1 _
X,=-)Y X;, 62==-) (X;—-X,)~
=YX A= Y- K
Then, by the Central Limit Theorem (CLT),

Xn_,u d

so an approximate 100(1 — a)% confidence interval for p is

Sls
\‘_/

_ o _
<Xn — Ra/2 ﬁa Xn + Za/2 "



2. Bootstrap Confidence Interval (Normal Approximation)
The classical CLT-based method relies on analytic variance estimation and asymptotic normality. But
what if 02 is hard to estimate, or the sampling distribution of X,, is complicated?

We can take a different approach by approximating the sampling distribution of X, using **boot-

strap**, which replaces the unknown distribution F' by the empirical distribution F,,.

;(b))

1. Resample: Draw B bootstrap samples (Xf(b)7 o X from the empirical distribution F,, (i.e.,

sample with replacement from {Xi,..., X,}).
2. For each resample, compute the sample mean X;;(b).

3. Estimate the standard error of X,, by the sample standard deviation of these bootstrap means:

L (5 _% T A
S€hoot = B Z <X;:(b) — X;;) ,  Wwhere X = B ZX;‘;(”).
b=1 b=1

4. Construct the confidence interval using a normal approximation:

(Xn — Ra/2 SAebooty Xn =+ Raj2* SA@boot) .

3. Comparison of the Two Methods

o Classical CLT method: Uses theoretical results (LLN + CLT + Slutsky) to derive asymptotic

normality and estimate the variance analytically via 62.

e Bootstrap method: Bypasses analytical variance estimation and instead estimates the standard
error directly via simulation from the empirical distribution. Assumes the bootstrap distribution

is approximately normal around the original estimator.

o Key difference: Classical method relies on known asymptotic theory; bootstrap relies on re-

sampling from the observed data, assuming F,, ~ F'.

e Heuristic nature: The bootstrap confidence interval via normal approximation is heuristic—it
works well when the sampling distribution is roughly symmetric and the sample size is large, but

it doesn’t follow from a strict limit theorem like the classical method.

Example 4 (Bootstrap Sampling Example) Suppose we already have one sample set {X;}!,,
id.d.

Step 1: {xV}, — T]S).

Step B: {Xi(B)}?:1 — Tj(é).



Then,

B B
_ 1 . 1 -
TM = E ZTI&)’UJQV[ = E Z(T]&) — T]w)2.
b=1 b=1
Specifically, bootstrap for linear regression can be demonstrated as
Linear Model: vy, = By + Bixi + i, and the least square estimator for By is B = z:i’ where

Var(Bl) = %
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Then,
B
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We have @ LN N(0,1), so the confidence intervel for [ is (Bl — 0Za)2, 31 + 6za/2>.
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