Modern Statistics

Lecture 14 - 04/07/2025

Nonparametric Inference

Lecturer:Xiangyu Chang

Scribe: LAI JIA XUAN, ARTEM ROMANOV

Edited by: Zhihong Liu

1 Empirical Distribution Function (EDF)

Definition 1 Given distribution function F, its empirical distribution function is:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x).$$

Proposition 1 The EDF estimator is unbiased.

Proof 1

$$\mathbb{E}[F_n(x)] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[I(X_i \le x)] = \frac{1}{n} \sum_{i=1}^n P(X_i \le x) = \frac{1}{n} \cdot nF(x) = F(x).$$

2 Histogram Density Estimator

Definition 2 Histogram density estimator for density function f is defined as

$$\hat{f}_n(x) = \frac{1}{h} \sum_{j=1}^m \hat{P}_j I(x \in B_j), \quad \hat{P}_j = \frac{n_j}{n}, \quad n_j = \sum_{i=1}^n I(X_i \in B_j).$$

Let $B_j = [b_{j-1}, b_j),$

$$h = b_j - b_{j-1}.$$

Bias:

For $x \in B_j$,

$$\mathbb{E}[\hat{f}_n(x)] = \frac{1}{h} \mathbb{E}[\hat{P}_j] = \frac{1}{h} P(X_i \in B_j) = \frac{1}{h} \int B_j f(u) du.$$

Let x^* be the midpoint of B_j , use Taylor expansion:

$$f(u) = f(x^*) + f'(x^*)(u - x^*) + \dots \Rightarrow \int_{B_i} f(u)du \approx hf(x^*),$$

Thus,

$$\mathbb{E}[\hat{f}_n(x)] \approx f(x) \Rightarrow |\mathbb{E}[\hat{f}_n(x)] - f(x)| \le |f(x) - f(x)| \le L|x - x^*| \le Lh.$$

Variance:

The variance can be calculated through

$$\hat{f}_n(x) = \frac{n_j}{nh},$$

$$\operatorname{Var}(\hat{f}_n(x)) = \frac{1}{n^2h^2}\operatorname{Var}(n_j).$$

Since $n_j \sim \text{Binomial}(n, p_j)$, with $p_j = P(X_i \in B_j) \approx hf(x^*), \text{Var}(n_j) = np_j(1 - p_j) \approx nhf(x^*)(1 - hf(x^*))$, Therefore,

$$\operatorname{Var}(\hat{f}_n(x)) = \frac{hf(x)}{nh^2} = \frac{f(x)}{nh}.$$

MISE:

Proposition 2 (Mean Integrated Squared Error (MISE)) $MISE = \mathcal{O}(n^{-\frac{2}{3}})$, where $MISE = \mathbb{E}\left[\int (\hat{f}_n(x) - f(x))^2 dx\right] = \int b^2(x) dx + \int Var[\hat{f}_n(x)] dx$.

Proof 2

$$bias(x) = \mathbb{E}[\hat{f}_n(x)] - f(x),$$

$$Var(x) = \mathbb{E}\left[\hat{f}_n(x) - \mathbb{E}[\hat{f}_n(x)]\right]^2,$$

 $\hat{f}_n(x)$ is a histogram

$$|bias(x)| = |\mathbb{E}[\hat{f}_n(x)] - f(x)| \text{ or } |f(x) - f(y)| \le L|x - y|$$

= $|f(x^*) - f(x)| \le L|x^* - x|$
 $\le Lh.$

f is L-Lipschitz: $\max_{x \in [0,1]} |f(x)| \le M$, $\max_{x \in [0,1]} |f'(x)| \le L$, for if $x \in B_j$,

$$\begin{split} Var[\hat{f}_n(x)] &= Var\left(\frac{\hat{p}_j}{n}\right) \\ &= \frac{1}{h^2} Var(\hat{p}_j) = \frac{1}{h^2} Var\left(\frac{n_j}{n}\right) \\ &= \frac{1}{n^2 h^2} Var\left[\sum_{i=1}^n \mathbb{I}(x_i \in B_j)\right] \\ &= \frac{1}{n^2 h^2} \sum_{i=1}^n Var[\mathbb{I}(x_i \in B_j)] \\ &= \frac{1}{n^2 h^2} np_j (1-p_j) = \frac{p_j (1-p_j)}{nh^2} = \frac{h \cdot f(x^*)(1-hf(x^*))}{nh^2} \\ &= \frac{f(x^*)(1-hf(x^*))}{nh} \leq \frac{M}{nh} + \frac{M^2}{n}. \end{split}$$

Then,

$$\begin{aligned} \mathit{MISE} &= L^2 h^2 + \frac{M}{nh} + \frac{M^2}{n} = L^2 h^2 + \frac{M}{2nh} + \frac{M}{2nh} + \frac{M^2}{n} \geq 3\sqrt[3]{L^2 h^2 \left(\frac{M}{2nh}\right)^2} + \frac{M^2}{n}, \\ \mathit{where} \ L^2 h^2 &= \frac{M}{2nh}, \ h_{opt} = \left(\frac{M}{2nL^2}\right)^{\frac{1}{3}} = \mathcal{O}(n^{-\frac{1}{3}}), \ \mathit{and} \ \mathit{MISE} = \mathcal{O}(n^{-\frac{2}{3}}). \end{aligned}$$

3 Kernel Density Estimation (KDE)

Definition 3 (Kernel Density Estimation) Kernel density estimation is defined as

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right),\,$$

where K satisfies

- $\int_{\mathbb{R}} K(x)dx = 1$.
- K(x) = K(-x).
- $\lim_{x\to\infty} K(x) = \lim_{x\to-\infty} K(x) = 0.$

We also define some quantity for kernel density estimation, $\mu_k^2 \triangleq \int x^2 K(x) dx < +\infty$, $\sigma_k^2 \triangleq \int k^2(x) dx < +\infty$.

Bias:

The bias at x_0 is

$$Bias(x_0) = \mathbb{E}[f_n(x_0)] - f(x_0) = \frac{1}{nh} \sum_{i=1}^n \mathbb{E}[K(\frac{x_i - x_0}{h})] - f(x_0)$$

$$= \frac{1}{h} \mathbb{E}[K(\frac{x - x_0}{h})] - f(x_0)$$

$$= \frac{1}{h} \int K(\frac{x - x_0}{h}) f(x) dx - f(x_0)$$

$$y = \frac{x - x_0}{h} \frac{1}{h} \int K(y) f(x_0 + hy) h \cdot dy$$

$$= \int K(y) f(x_0 + hy) dy - \int K(y) f(x) dy$$

$$= \int K(y) [f(x_0 + hy) - f(x_0)] dy$$

$$= \int K(y) [f'(x_0) hy + \frac{f''(x_0) h^2 y^2}{2} + \mathcal{O}(h^3)] dy$$

$$= \frac{f''(x_0) h^2}{2} \int y^2 K(y) dy + \mathcal{O}(h^3)$$

$$= \frac{f''(x_0) h^2 \mu_k^2}{2}.$$

Variance:

The variance of $f_n(x_0)$ is

$$\operatorname{Var}(f_{n}(x_{0})) = \frac{1}{n^{2}h^{2}} \sum_{i=1}^{n} \operatorname{Var}(K(\frac{x_{i} - x_{0}}{h})),$$

$$= \frac{1}{nh^{2}} \operatorname{Var}(K(\frac{x - x_{0}}{h}))$$

$$\leq \frac{1}{nh^{2}} \mathbb{E}[k^{2}(\frac{x - x_{0}}{h})]$$

$$= \frac{1}{nh} \int k^{2}(\frac{x - x_{0}}{h})f(x)dx$$

$$= \frac{1}{nh} \int k^{2}(y)f(x_{0} + hy)dy$$

$$= \frac{1}{nh} \int k^{2}(y)[f(x_{0}) + f'(x_{0})hy + \mathcal{O}(h)]dy$$

$$= \frac{f(x_{0})\sigma_{k}^{2}}{nh} + \frac{f'(x_{0})}{n} \int yk^{2}(y)dy + \mathcal{O}(\frac{1}{nh})$$

$$= \frac{f(x_{0})\sigma_{k}^{2}}{nh}.$$

MISE:

$$\begin{aligned} \text{MISE} &= \frac{[f''(x_0)]^2 h^2 \mu_k^4}{4} + \frac{f(x_0) \sigma_k^2}{nh} \\ &= \frac{[f''(x_0)]^2 h^2 \mu_k^4}{4} + \frac{f(x_0) \sigma_k^2}{4nh} \cdot 4 \ge 5 \cdot \sqrt[5]{\frac{[f''(x_0)]^2 h^2 \mu_k^4}{4} \left(\frac{f(x_0) \sigma_k^2}{4nh}\right)^4}. \end{aligned}$$

The condition for the equality is $h^4 = \frac{f(x_0)\sigma_k^2}{n\mu_k^4[f''(x_0)]^2}$, which is $h_{\text{opt}} = \left[\frac{f(x_0)\sigma_k^2}{n\mu_k^4[f''(x_0)]^2}\right]^{\frac{1}{5}} = \mathcal{O}(n^{\frac{1}{5}})$, which implies MISE $= \mathcal{O}(n^{-\frac{4}{5}})$.

4 Nonparametric Regression

Suppose the data is $\{(x_i, y_i)\}_{i=1}^n$, the nonparametric regression function r is defined $r(x) : \mathbb{R}^d \to \mathbb{R}$, where $y = r(x) + \epsilon$ and r is actually

$$r(x) = \mathbb{E}[y|x] = \begin{cases} r(x) = \beta_0 + \beta_1 x \text{ or } r(x) = \beta^T x, \text{ for linear regression.} \\ r(x) = \frac{\sum_{i=1}^n w_{n,i}(x)y_i}{\sum_{i=1}^n w_{n,i}}, \text{ for nonparametric regression.} \end{cases}$$
(1)

Define $w_{n,i}(x) \triangleq w(x, x_1, \dots, x_n), v_{n,j}(x) \triangleq \frac{w_{n,j}(x)}{\sum_{i=1}^n w_{n,i}(x)}$, then $r(x) = \sum_{i=1}^n w_{n,i}(x)y_i$ and $\sum_{i=1}^n v_{n,i}(x) = 1$.

Example 1 (Partition Estimation) For $R = \bigcup_{j=1}^{M} B_j$, where $B_i \cap B_j = \emptyset$, define the partition estimator $r_n(x)$ is

$$r_n(x) = \frac{\sum_{i=1}^n \mathbb{I}(x_i \in B_j) y_i}{\sum_{i=1}^n \mathbb{I}(x_i \in B_j)}, x \in B_j.$$
 (2)

Example 2 (KNN) For fixed x, $x_{(i)}$ is defined as the i-th nearest neighbor with respect to norm $||\cdot||$, $i = 1, 2, \dots, n$, that is,

$$||x_{(1)} - x|| \le ||x_{(2)} - x|| \le \dots \le ||x_{(n)}x||.$$

Then, for some constant K, the KNN estimator is defined as

$$r_n(x) = \frac{1}{K} \sum_{i=1}^k y_{(i)}.$$
 (3)

Example 3 (Kernel Estimation) For some kernel function K, the kernel estimator is given as

$$r_n(x) = \frac{\sum_{i=1}^n K(\frac{x_i - x}{h}) y_i}{\sum_{i=1}^n K(\frac{x_i - x}{h})}.$$
 (4)

For instance, if $K(x) = \mathbb{I}[-\frac{1}{2}, \frac{1}{2}]$, then only $x \in [x_i - \frac{h}{2}, x_i + \frac{h}{2}]$ can have no-zero weights.

5 Bootstrap Method

5.1 Confidence Interval for the Mean: Classical vs. Bootstrap

1. Classical Confidence Interval via Central Limit Theorem

Let $X_1, X_2, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} F$ with $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \text{Var}(X_i) < \infty$. Define the sample mean and sample variance:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Then, by the Central Limit Theorem (CLT),

$$\frac{X_n - \mu}{\hat{\sigma}/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1),$$

so an approximate $100(1-\alpha)\%$ confidence interval for μ is

$$\left(\bar{X}_n - z_{\alpha/2} \cdot \frac{\hat{\sigma}}{\sqrt{n}}, \ \bar{X}_n + z_{\alpha/2} \cdot \frac{\hat{\sigma}}{\sqrt{n}}\right).$$

2. Bootstrap Confidence Interval (Normal Approximation)

The classical CLT-based method relies on analytic variance estimation and asymptotic normality. But what if σ^2 is hard to estimate, or the sampling distribution of \bar{X}_n is complicated?

We can take a different approach by approximating the sampling distribution of \bar{X}_n using **bootstrap**, which replaces the unknown distribution F by the empirical distribution F_n .

- 1. Resample: Draw B bootstrap samples $(X_1^{*(b)}, \ldots, X_n^{*(b)})$ from the empirical distribution F_n (i.e., sample with replacement from $\{X_1, \ldots, X_n\}$).
- 2. For each resample, compute the sample mean $\bar{X}_n^{*(b)}$.
- 3. Estimate the standard error of \bar{X}_n by the sample standard deviation of these bootstrap means:

$$\hat{se}_{\text{boot}} = \sqrt{\frac{1}{B} \sum_{b=1}^{B} \left(\bar{X}_{n}^{*(b)} - \bar{X}_{n}^{*} \right)^{2}}, \text{ where } \bar{X}_{n}^{*} = \frac{1}{B} \sum_{b=1}^{B} \bar{X}_{n}^{*(b)}.$$

4. Construct the confidence interval using a normal approximation:

$$(\bar{X}_n - z_{\alpha/2} \cdot \hat{se}_{\text{boot}}, \ \bar{X}_n + z_{\alpha/2} \cdot \hat{se}_{\text{boot}}).$$

3. Comparison of the Two Methods

- Classical CLT method: Uses theoretical results (LLN + CLT + Slutsky) to derive asymptotic normality and estimate the variance analytically via $\hat{\sigma}^2$.
- Bootstrap method: Bypasses analytical variance estimation and instead estimates the standard error directly via simulation from the empirical distribution. Assumes the bootstrap distribution is approximately normal around the original estimator.
- **Key difference:** Classical method relies on known asymptotic theory; bootstrap relies on resampling from the observed data, assuming $F_n \approx F$.
- Heuristic nature: The bootstrap confidence interval via normal approximation is heuristic—it works well when the sampling distribution is roughly symmetric and the sample size is large, but it doesn't follow from a strict limit theorem like the classical method.

Example 4 (Bootstrap Sampling Example) Suppose we already have one sample set $\{X_i\}_{i=1}^n$, with $X_i \overset{i.i.d.}{\sim} F$.

Step 1:
$$\{X_i^{(1)}\}_{i=1}^n \to T_M^{(1)}$$
.
:
Step B: $\{X_i^{(B)}\}_{i=1}^n \to T_M^{(1)}$.

Then,

$$\bar{T}_M = \frac{1}{B} \sum_{b=1}^B T_M^{(b)}, \hat{\sigma}_M^2 = \frac{1}{n} \sum_{b=1}^B (T_M^{(b)} - \bar{T}_M)^2.$$

Specifically, bootstrap for linear regression can be demonstrated as

Linear Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, and the least square estimator for β_1 is $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$, where $Var(\hat{\beta}_1) = \frac{\sigma^2}{nS_{xx}}$.

Step 1:
$$\{X_i^{(1)}\}_{i=1}^n \to \hat{\beta}_1^{(1)} = \frac{S_{xy}^{(1)}}{S_{xx}^{(1)}}$$
.

:

Step B:
$$\{X_i^{(B)}\}_{i=1}^n \to \hat{\beta}_1^{(B)} = \frac{S_{xy}^{(B)}}{S_{xx}^{(B)}}$$
.

Then,

$$\bar{\hat{\beta}}_1 = \frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_1^{(b)}, \ \hat{\sigma}^2 = \frac{1}{n} \sum_{b=1}^{B} (\hat{\beta}_1^{(b)} - \bar{\hat{\beta}}_1)^2.$$

We have $\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}} \xrightarrow{d} \mathcal{N}(0,1)$, so the confidence intervel for β_1 is $(\hat{\beta}_1 - \hat{\sigma}z_{\alpha/2}, \hat{\beta}_1 + \hat{\sigma}z_{\alpha/2})$.